273 research outputs found

    Apparent Scarcity of Low-Density Polymorphs of Inorganic Solids

    Get PDF
    For most inorganic solids, very few dense polymorphs and no low-density polymorphs are observed. Taking a wide range of tetrahedrally-coordinated binary solids (e.g., ZnO, GaN) as a prototypical system, we show that the apparent scarcity of low-density polymorphs is not due to significant structural or energetic limitations. Using databases of periodic networks as sources of novel crystal structures, followed by ab initio energy minimization, we predict a dense spectrum of low-density low-energy polymorphs. The diverse range of materials considered indicates that this is likely to be a general phenomenon

    Ab initio data-analytics study of carbon-dioxide activation on semiconductor oxide surfaces

    Get PDF
    The excessive emissions of carbon dioxide (CO2) into the atmosphere threaten to shift the CO2 cycle planet-wide and induce unpredictable climate changes. Using artificial intelligence (AI) trained on high-throughput first principles based data for a broad family of oxides, we develop a strategy for a rational design of catalytic materials for converting CO2 to fuels and other useful chemicals. We demonstrate that an electron transfer to the π-antibonding orbital of the adsorbed molecule and the associated bending of the initially linear molecule, previously proposed as the indicator of activation, are insufficient to account for the good catalytic performance of experimentally characterized oxide surfaces. Instead, our AI model identifies the common feature of these surfaces in the binding of a molecular O atom to a surface cation, which results in a strong elongation and therefore weakening of one molecular C-O bond. This finding suggests using the C-O bond elongation as an indicator of CO2 activation. Based on these findings, we propose a set of new promising oxide-based catalysts for CO2 conversion, and a recipe to find more

    When Langmuir is too simple: H-2 dissociation on Pd(111) at high coverage

    Get PDF
    Recent experiments of H2 adsorption on Pd(111) [T. Mitsui et al., Nature (London) 422, 705 (2003)] have questioned the classical Langmuir picture of second order adsorption kinetics at high surface coverage requiring pairs of empty sites for the dissociative chemisorption. Experiments find that at least three empty sites are needed. Through density functional theory, we find that H2 dissociation is favored on ensembles of sites that involve a Pd atom with no direct interaction with adsorbed hydrogen. Such active sites are formed by aggregation of at least 3 H-free sites revealing the complex structure of the "active sites.

    Electronic structure of the molecule based magnet Cu PM(NO3)2 (H2O)2

    Full text link
    We present density functional calculations on the molecule based S=1/2 antiferromagnetic chain compound Cu PM(NO3)2 (H2O)2; PM = pyrimidine. The properties of the ferro- and antiferromagnetic state are investigated at the level of the local density approximation and with the hybrid functional B3LYP. Spin density maps illustrate the exchange path via the pyrimidine molecule which mediates the magnetism in the one-dimensional chain. The computed exchange coupling is antiferromagnetic and in reasonable agreement with the experiment. It is suggested that the antiferromagnetic coupling is due to the possibility of stronger delocalization of the charges on the nitrogen atoms, compared to the ferromagnetic case. In addition, computed isotropic and anisotropic hyperfine interaction parameters are compared with recent NMR experiments

    Antimicrobial removal on piglets promotes health and higher bacterial diversity in the nasal microbiota

    Get PDF
    The view on antimicrobials has dramatically changed due to the increased knowledge on the importance of microbiota composition in different body parts. Antimicrobials can no longer be considered only beneficial, but also potentially deleterious for favourable bacterial populations. Still, the use of metaphylactic antimicrobial treatment at early stages of life is a practice in use in porcine production. Many reports have shown that antibiotics can critically affect the gut microbiota, however the effect of perinatal antimicrobial treatment on the nasal microbiota has not been explored yet. To gain insights on the potential changes in nasal microbial composition due to antimicrobial treatments, piglets from two different farms were sampled at weaning. The nasal microbiota was analysed when antimicrobial treatment was used early in life, and later, when no antimicrobial treatment was used during the lactation period. Removal of perinatal antimicrobials resulted in an increased bacterial diversity in nasal microbiota at weaning. Concurrently, elimination of antimicrobials produced an increase in the relative abundance of Prevotella and Lactobacillus, and a decrease in Moraxella and Bergeyella. These changes in microbiota composition were accompanied by an improvement of the piglets' health and a higher productivity in the nursery phase

    Effect of the surface model on the theoretical description of the chemisorption of atomic hydrogen on Cu(001)

    No full text
    Adsorption at surfaces can be modelled using a periodic supercell approach or using finite clusters. For many systems and properties these models are complementary and often the most productive way to work is to use a combination of these techniques. If reliable data is to be obtained it is essential that convergence is achieved with respect to the size of supercell and cluster. This work discusses the convergence of chemisorption properties of H on Cu(001) with respect to the cluster size. To this end calculations of the H binding energy and equilibrium distance, are reported for cluster models of increasing size containing up to 77 metal atoms. Likewise, periodic slab model calculations are used to provide the corresponding values towards which the cluster approach should converge. In many previous studies of a wide variety of systems it has been established that computed equilibrium distances converge rapidly with respect to cluster size. Here, a systematic study of the dependence on cluster size shows that, for adsorption in the 4-fold site, convergence is not achieved even for very large clusters. The reason for this poor convergence is seen to be the inability of the cluster model to reproduce accurately the charge density and electrostatic potential of the crystalline surface

    CO2 interaction with violarite (FeNi2S4) surfaces: a dispersion-corrected DFT study

    Get PDF
    The unbridled emissions of gases derived from the use of fossil fuels have led to an excessive concentration of carbon dioxide (CO2) in the atmosphere with concomitant problems to the environment. It is therefore imperative that new cost-effective catalysts are developed to mitigate the resulting harmful effects through the activation and conversion of CO2 molecules. In this paper, we have used calculations based on the density functional theory (DFT), including two semi-empirical approaches for the long-range dispersion interactions (-D2 and -D3), to explore the interaction of CO2 with the surfaces of spinel-structured violarite (FeNi2S4). This ternary sulfide contains iron ions in the highest possible oxidation state, while the nickel atoms are in the mixed 2+/3+ valence state. We found that CO2 interaction with violarite is only moderate due to the repulsion between the oxygen lone pairs and the electronic clouds of the sulfur surface atoms. This suggests that the CO2 activation is not dictated by the presence of nickel, as compared to the pure iron-isomorph greigite (Fe3S4). These results differ from findings in (Ni,Fe) ferredoxin enzymes, where the Ni/Fe ratio influences the redox potential, which suggests that the periodic crystal structure of violarite may hinder its redox capability
    corecore